
Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

ISSN: 0128-7680
e-ISSN: 2231-8526

Journal homepage: http://www.pertanika.upm.edu.my/

© Universiti Putra Malaysia Press

Article history:
Received: 21 September 2020
Accepted: 30 December 2020
Published: 30 April 2021

ARTICLE INFO

DOI: https://doi.org/10.47836/pjst.29.2.01

SCIENCE & TECHNOLOGY

E-mail addresses:
6010120066@psu.ac.th (Panadda Solod)
nattha.s@psu.ac.th (Nattha Jindapetch)
ak.kiatisak@hotmail.com (Kiattisak Sengchuai)
bapidet@eng.psu.ac.th (Apidet Booranawong)
hpakpoom@eng.psu.ac.th (Pakpoom Hoyingcharoen)
surachate@th.nexty-ele.com (Surachate Chumpol)
ikura@th.nexty-ele.com (Masami Ikura)
* Corresponding author

High Level Synthesis Optimizations of Road Lane Detection
Development on Zynq-7000

Panadda Solod1*, Nattha Jindapetch1, Kiattisak Sengchuai1, Apidet Booranawong1,
Pakpoom Hoyingcharoen1, Surachate Chumpol2 and Masami Ikura2

1Department of Electrical Engineering, Faculty of Engineering, Prince of Songkla University,
Hat Yai, Songkhla 90112, Thailand
2Toyota Tsusho Nexty Electronics (Thailand) co, Ltd Bangkok, Thailand

ABSTRACT

In this work, we proposed High-Level Synthesis (HLS) optimization processes to improve
the speed and the resource usage of complex algorithms, especially nested-loop. The
proposed HLS optimization processes are divided into four steps: array sizing is performed
to decrease the resource usage on Programmable Logic (PL) part, loop analysis is performed
to determine which loop must be loop unrolling or loop pipelining, array partitioning is
performed to resolve the bottleneck of loop unrolling and loop pipelining, and HLS interface
is performed to select the best block level and port level interface for array argument of RTL
design. A case study road lane detection was analyzed and applied with suitable optimization
techniques to implement on the Xilinx Zynq-7000 family (Zybo ZC7010-1) which was a
low-cost FPGA. From the experimental results, our proposed method reaches 6.66 times
faster than the primitive method at clock frequency 100 MHz or about 6 FPS. Although
the proposed methods cannot reach the standard real-time (25 FPS), they can instruct HLS
developers for speed increasing and resource decreasing on an FPGA.

Keywords: Array partitioning, FPGA, high level
synthesis (HLS), HLS interface, loop pipelining,
loop unrolling

INTRODUCTION

Advanced Driving Assistant Systems
(ADAS) are enhanced self-driving in
autonomous driving cars. There are many
sub-systems in ADAS, such as Lane
Keeping Assistant System (LKAS) and

Panadda Solod, Nattha Jindapetch, Kiattisak Sengchuai, Apidet Booranawong,
Pakpoom Hoyingcharoen, Surachate Chumpol and Masami Ikura

708 Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

Lane Departure Warning System (LDWS) (Chen & Boukerche, 2020). Both LKAS and
LDWS contain road lane detection, which is one of the complex systems in ADAS. The
important thing about road lane detection, which causes the accuracy of detection is the
various environment. Therefore, many algorithms are developed to resolve the problem.
The perception model for autonomous vehicles in a variety of environments such as
dynamic movements of obstacles, parked and moving vehicles, poor quality lines, shape
curve, and the strange lane was reviewed (Feniche & Mazri, 2019). The typical model for
lane detection consists of five steps: image cleaning, feature detection, model application,
tracking integration, and coordinates translation. Most of lane detection algorithm contains
straight line detection, which is Hough Transform (HT).

Due to the requirements of road lane detection, which are real-time computation and
low-power consumption. A real-time lane detection was implemented using simple filter
and Kalman filter on a high-performance device (IMX6Q) (Lee et al., 2017) and Canny-
Hough is modified (Hwang & Lee, 2016) to achieve high-speed computation. To achieve
both requirements to develop on a hardware device, Lu et al. (2013), Guan et al. (2017),
and Marzotto et al. (2010) developed parallel architectures for the road lane detection on
hardware devices (Virtex-5, ML505, ALTERA DE2, and ALTERA DE2-115). Although the
high-speed computation with low-power consumption can be recompense by using hardware
devices, the development time still long and high cost. In Promrit and Suntiamorntut (2017),
blob detection and HT were applied for road lane detection on the low-cost hardware device
(Zynq-7000 family). To decrease the development time, Khongprasongsiri et al. (2018)
and Panda et al. (2018) considered the optimization technique on HLS (loop-pipelining and
loop-unrolling) to resolve the bottleneck computation and found out the suitable factor for
loop algorithm. However, the HLS optimization techniques on hardware devices analysis
with complex algorithms such as lane detection have not been completely analyzed yet.

In this study, we proposed HLS optimization processes and analysis methods
on hardware devices (Zynq-ZC7010) for implementing the complicated algorithms,
especially the nested-loop for high-speed and low-resource usage on low-cost devices. The
contributions are the proposed HLS optimization processes that should be done sequentially.
In each process, we proposed an analysis method to consider the suitable optimization
techniques should be applied to implement on a device. Road lane detection in Solod et al.
(2018) was selected to be a case study, which contained four main steps: pre-processing,
edge detection, line detection, and angle calculation. The experimental results illustrated
the improvement after applied each HLS optimization process that can be the instructions
for speed increasing and resource decreasing on an FPGA.

PRELIMINARIES

This section explains basic knowledge of lane detection (edge detection and Hough
transform) and HLS optimization techniques (pipelining, loop unrolling, array partitioning,

High Level Synthesis Optimizations of Road Lane Detection

709Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

HLS interface). Since this paper does not propose either the new architecture or algorithms
for the lane detection, the original theories, as well as the HLS optimization techniques are
explained. This is a case study to be applied with the proposed HLS optimization processes.

 Edge Detection

Figure 1. X and Y direction gradient value of Prewitt
Edge Detection

Figure 2. X and Y direction gradient value of Sobel
Edge Detection

Figure 3. X and Y direction gradient value of Robert
Edge Detection

There are many methods to perform edge
detection. Prewitt, Sobel, Robert, and
Canny edge detections use the gradient
method to detect the edge by looking at
the maximum and minimum value in the
first derivative of the image. The gradient
method of Prewitt, Sobel, and Robert to
detect edge has different gradient values of
x and y direction as respectively shown in
Figures 1, 2 and 3.

Meanwhile, Canny edge detection also
uses the gradient method, but it is more
complicated steps than the others. In the
edge detection process, there are six steps:
(i) reducing the noise by using Gaussian
filter, (ii) finding edge by taking the gradient
of the image (the gradient value is the same
as Sobel edge detection), (iii) finding edge
strength, (iv) finding the edge direction
by the Equation 1, (v) tracing the related
edge direction to the direction in an image,
then perform non-maximum suppression,
and (vi) finally eliminating streaking by
hysteresis.

/) 						 [1]

Hough Transform

For lines and circles identification, Hough transform is one of a feature extraction to
process by using a voting procedure to detect incomplete instances of objects of a
particular type of shape. Generally, according to Equation 2, the straight line is capable
to represent the linear equation with two important parameters: slope (m) and intercept

Panadda Solod, Nattha Jindapetch, Kiattisak Sengchuai, Apidet Booranawong,
Pakpoom Hoyingcharoen, Surachate Chumpol and Masami Ikura

710 Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

(c). Equation 3 represents the polar form of
a line. Figure 4 shows the transformation
of Hough, where ρ represents the vertical
distance of the straight line on x-y plane
from the origin position. The angle between
ρ and horizontal axes is represented by
θ. A position on the blue straight line on
x-y plane indicates to each curve on θ-ρ

ɵ

ᵨ

x

y ᵨ

ɵ

Figure 4. Hough transform concept

plane. An identical straight line will cause an identical intersection position of the curve
on θ-ρ plane. Therefore, the length of the straight line is able to represent the number of
intersection curves.

							 [2]

						 [3]

Pipelining

Pipelining is a method for rapidity optimization, which decreases the latency of the
operations by the initiation interval (II) decreasing for a function or loop. Figure 5 is a
sample of the pipelining technique applied to a for-loop, which contains 3 operations:
Rd, Cmp, and Wr. The left-hand side of Figure 5 is an operating sequence of the process
without pipelining. Each iteration needs three clock cycles for processing. Six clock cycles
are needed for two iterations processing due to the last operation of the first iteration must
be completed before the first operation in the consecutive iteration starts. In contrast,
pipelining is applied to the same for-loop with II equal to 1. In the second clock cycle, the
first operation in the consecutive iteration can be immediately operated as shown on the

for (i=0; i<2; i++){
Rd;
Cmp;
Wr;

}

Rd Cmp Wr Rd Cmp Wr Rd Cmp Wr

Rd Cmp Wr
Loop latency = 6 cycles

Loop latency = 4 cycles

Initiation interval = 3 cycles

Latency = 3 cycles

Latency = 3 cycles

Without loop pipelining With loop pipelining

Initiation interval = 1 cycles

Figure 5. The example of loop pipelining for for-loop

High Level Synthesis Optimizations of Road Lane Detection

711Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

right-hand side of Figure 5. The number of clock cycles for processing is reduced from
six to four clock cycles.

Unrolling

Unrolling is a performance optimization technique as well. It allows some or all iterations
to be concomitant. Figure 6 is an example of applying loop unrolling. Without unrolling,
each element of the array needs 1 clock cycle for processing. Therefore, six iterations are
needed to process six elements of array whereas only two iterations are needed in case of
using unrolling with factor equals three due to three elements of array are processed in 1
clock cycle.

Figure 6. The example of loop unrolling for for-loop

Array Partitioning

Array partitioning is a method for speed and region optimization provided by Xilinx Vivado
HLS. An original array is divided into sub-group of smaller arrays and stored into separate
banks. Figure 7 demonstrates three types of array partitioning, which are block, cyclic,
and complete types. In the case of the block type, a large array is divided into balanced
blocks whose array elements are consecutively arranged. In the case of the cyclic type, a
large array is divided into a balanced block and interleaved with elements. In the case of
the complete type, an array is divided into single elements.

HLS Interface

Xilinx Vivado HLS supports the specification of I/O protocol types. Port interface is created
by the synthesis of interface based on efficacy industry-standard interface and manual
interface specifications, with the manner of the interface is illustrated in the input source
code. Three port types on RTL design, including clock and reset port, block-level interface
protocols, and port-level interface protocols are created by Xilinx Vivado. Typically, the

Panadda Solod, Nattha Jindapetch, Kiattisak Sengchuai, Apidet Booranawong,
Pakpoom Hoyingcharoen, Surachate Chumpol and Masami Ikura

712 Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

protocol of the block-level interface is gathered in the design. These signals control the
block are autonomous to port-level I/O protocols. These ports determine when the block
can begin data processing, demonstrate when new inputs can be asserted new inputs, and
demonstrate whether the system is idle or the operation completed. After the block-level
protocol has been used to start the operation of the block, the port-level I/O protocols are
used to sequence data into and out of the block.

METHODS

Road Detection Framework

A framework of lane tracking proposed in this paper is shown in Figure 8. There are
four main steps: 1. pre-processing, 2. edge detection, 3. line detection, and 4. angle
calculation. Edge detection and line detection are implemented on the PL part to increase
the operation speed, and others are implemented on the PS part. Pre-processing expanded
in Figure 9 includes image cropping, image dividing into two parts (left side image and
right side image) to separate left and right line, an RGB to grayscale image conversion,
and grayscale to binary image conversion. According to the result in Solod et al. (2018),
Robert edge detection is selected to perform edge detection. Hough line transform is then

Figure 7. The type of array partitioning

Figure 8. Road lane detection framework

High Level Synthesis Optimizations of Road Lane Detection

713Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

Figure 9. Pre-processing step of road lane detection

applied to the line detection. The positions
of (x1, y1) and (x2, y2) obtained from the
line detection step are used to calculate the
angles (ϴ1 and ϴ2).

The angle calculation is divided into
three cases to recognize the road path curve
and prevent fallibility from the previous
step. ϴ 1 represents the angle of the left
side and ϴ2 represents the angle of the right
side. The first case is straight lane as shown
in Figure 10, which ϴ1 must be over 90º
and ϴ2 must be less than 90º. The second
case is the left curve as shown in Figure 11,
in which ϴ1 and ϴ2 must be less than 90º.
The last case is the right curve as shown
in Figure 12, in which ϴ1 and ϴ2 must be
over 90º.

HLS Optimization Processes

According to the operation time of road
lane detection spends most time in the
process. Edge detection and line detection
are implemented on PL using HLS on
Zynq-7000, which allows C and C++
languages and authorizes efficient method
as loop unrolling, loop pipelining, or array

Figure 10. The measurement angle of straight lane

Figure 11. The measurement angle of left curve lane

Figure 12. The measurement angle of right curve
lane

Panadda Solod, Nattha Jindapetch, Kiattisak Sengchuai, Apidet Booranawong,
Pakpoom Hoyingcharoen, Surachate Chumpol and Masami Ikura

714 Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

partitioning, etc. The proposed HLS optimization processes are divided into four steps as
follows.

•	 Step 1: array sizing is performed to decrease the resource usage on PL part.
•	 Step 2: loop analysis is performed to determine which loop must be loop unrolling

or loop pipelining.
•	 Step 3: array partitioning is performed to resolve the bottleneck of loop unrolling

and loop pipelining.
•	 Step 4: HLS interface is performed to select the best block level and port level

interface for array argument of RTL design.

These four HLS optimization processes should be done sequentially. In each process,
an analysis method is proposed to consider the suitable optimization techniques should
be applied to implement on an FPGA device. If the optimization processes are not done
in suggested sequence, the optimization resistant result may be obtained. This behavior is
illustrated in the experimental results and discussions section.

Array Sizing. The first point to consider is the array sizing. Analysis and calculation of the
appropriate array size for block memory storage capacity can decrease over the allocation of
block RAM (BRAM) by considering the amount of BRAM in Equation 4. At array sizing
step, 2 parameters are considered. The first parameter is memory depth, which caused by
the amount of array element. For example, consider a 16-bits 1-dimension array with 2050
word lines. Due to the requirement of the memory depth, the memory depth must over
2050. The at least memory depth for this array is 4096(212), the data width is 16 bits and
the size of BRAM is 18K bits (18KBRAM). According to Equation 4, 4(22) 18K BRAM is
allocated to keep the array. Likewise, the word line of the array is reduced to 2048 we need
to allocate 4(22) BRAM 18K to store an array. Likewise, the size of the array is reduced
to 2048, the amount of BRAM is decreased to 2(21).

In this work, we reduced the input image from 1920×1080 pixels to 200×200 pixels.
From the Hough line transform theory, the maximum diagonal is reduced from 1445 to
224, which equates to the value of rho in the first dimension size of hough1[rho][theta]
and hough2[rho][theta] array. The second parameter is the data width. According to the
concept of Hough line transform, the value of hough1[rho][theta] and hough2[rho][theta]
will not over the value of rho parameter, which has the maximum value to the diagonal line
of the image, so the data width can be reduced from 16 bits to 8 bits. Theta also decreases
from 0º-360º to 30º-150º. Thus the second dimension is reduced from 360 to 120, which
is sufficient for road lane detection.

			 [4]

High Level Synthesis Optimizations of Road Lane Detection

715Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

Loop Analysis. From the theory of Robert
edge detection and Hough line transform,
we summarize into four main nested
loops that are agreeable to C language as
shown in Figure 13. The first step is started
with a 2-layer nested loop of a 16-bit-2-
dimension array (hough1[rho][theta] and
hough2[rho][theta]) is initialized to 0 for
intersection times counting that starts with
zero. The iteration of the inner layer equals
the number of theta and the outer layer
equals the number of rho. The second step
is divided into two minor nested loops,
which are a 4-layer nested loop for edge
detection and a 3-layer nested loop to count
intersection times in θ-ρ plane for every
pixel. The third step is a 2-layer nested loop
for the Hough line transform normalization
by considering the value of all elements
of hough1[rho][theta] and hough2[rho]
[theta]. The final step is a 3-layer nested
loop for lane tracking by array hough1[rho]
[theta] and hough2[rho][theta] checking
to determine the position of the line in the
image. From all steps of edge detection and line detection in Figure 13, we found that the
nested loop is in every step, which caused speed reduction. In this work, we consider each
nested loop with an optimization technique that is appropriate with the nested loop type.
Both 2-dimension arrays hough1[rho][theta] and hough2[rho][theta] are initialized in the
first nested loop, which results in each iteration is independent. All array elements can
be initialized simultaneously. Generally, as shown in Figure 14, two iterations in the first
nested loop need four clock cycles to operate. In the case of loop unrolling is added, two
iterations need only two clock cycles to operate. Edge detection in the first minor nested
loop is dependent value in each iteration. According to Robert edge detection theory, both
x_weight and y_weight are convolution results, which are cumulative variables. Therefore,
loop unrolling is not necessary for the first minor nested loop.

		 [5]

Figure 13. The nested loops of C language for edge
and line detection

Panadda Solod, Nattha Jindapetch, Kiattisak Sengchuai, Apidet Booranawong,
Pakpoom Hoyingcharoen, Surachate Chumpol and Masami Ikura

716 Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

The second minor nested loop is counting times of intersection in θ and ρ space
according to the Hough line transform. Equation 5 demonstrates that hough1[rho][theta]
and hough2[rho][theta] are cumulative variables, which is dependent on other iteration
as well. Therefore, loop pipelining is appropriate to add in the second minor nested loop.
The schedule of this step will be changed following Figure 15, without loop pipelining
the next element of hough1[rho][theta] and hough2[rho][theta] cannot be started reading
before the previous element finished processing, whereas adding loop pipelining, the next
element of hough1[rho][theta] and hough2[rho][theta] can start reading before previous
element finish processing.

hough1[rho][theta] and hough2[rho][theta] are normalized in third nested loop. This
step is similar to the first nested loop, in which the result in each iteration is independent.
Loop unrolling will get less latency than loop pipelining, thus loop unrolling should be
selected if the resource is sufficient.

The value of every element of hough1[rho][theta] and hough2[rho][theta] is checked
to mark the position of the lane so the result in each iteration is not influencing to the
other. Loop unrolling should be selected as well as the third nested loop. However, loop

Without Loop Pipelining With Loop Pipelining

hough[rho][theta] = hough[rho][theta]+1

Figure 15. Loop pipelining applying in 2nd minor nested loop

Without Loop Unrolling With Loop Unrolling

Figure 14. Loop unrolling applying in 1st nested loop

High Level Synthesis Optimizations of Road Lane Detection

717Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

pipelining must be selected instead of loop unrolling because of the limitation of resources
on the device.

Array Partitioning for Unrolling and Pipelining. Array partitioning significantly reduces
that can decrease the latency. This technique encourages loop pipelining and loop unrolling,
such as in the second minor nested loop. Although loop pipelining is added, hough1[rho]
[theta] and hough2[rho][theta] are still stored in the same bank of memory, the bottleneck
will occur because each BRAM allows only one read operation of one element at that time.
Loop pipelining will not get the highest efficiency as expected. Thus, the second element
(hough1[rho +x] [theta+1] and hough2[rho+x][theta+1]) of array hough1[rho][theta] and
hough2[rho][theta] cannot be accessed until the first element (hough1[rho][theta] and
hough2[rho][theta]) is successfully accessed. Due to the bottleneck issue, loop unrolling
in Figure 14 cannot get the highest efficiency as well. We found that array partition can be
resolve or ameliorate this problem. In this part, an array partitioning block type, F equal
to 6, and D equal to 2 are applied to hough1[rho][theta] and hough2[rho][theta] in Figure
16. The original array on the top is stored in one bank of memory. This array is divided
into 6 banks of memory after array partitioning is applied. Memory depth in each bank
equals 8,192.

Figure 16. Array partitioning type of hough1[rho][theta] and hough2[rho][theta]

Panadda Solod, Nattha Jindapetch, Kiattisak Sengchuai, Apidet Booranawong,
Pakpoom Hoyingcharoen, Surachate Chumpol and Masami Ikura

718 Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

HLS interface for Array Type. Register Transfer Level (RTL) description is created by
Xilinx HLS, in which an input/output operation must be performed through a port in the
design. In this work, an RTL has 1-input port and 1-output port, which is all 1-dimension
array. We consider port design that suitable for an array type. There are ap_ctrl_none,
ap_ctrl_hs and ap_ctrl_chain for block-level interface. There are axis, s_axilite, m_axi,
ap_hs, ap_memory, bram, ap_fifo, and ap_bus for data transmission.

RESULTS AND DISCUSSIONS

This experiment aims to increase the speed of road lane detection by adding HLS
optimization techniques including array sizing, loop unrolling, loop pipelining, and HLS
interface management. The comparison of resource usage and operating time are discussing
as well.

Process Profiling

In the beginning, the profile of the operation time of each process in road lane detection is
extracted on Intel® Core™ i7-7500U CPU @ 2.70 GHz, which input file has size 720x1280
pixels and frame rate 24 fps. The detailed profiling of process activities illustrates the time-
consuming processes that must be implemented as hardware accelerators on the PL part.
We found that the step of edge detection and line detection step spent most processing
time as shown in Table 1.

Table 1
Comparison of operation time in each process

Optimization
Resource (%)

Latency
DSP BRAM CLB FF

Default 17 1,710 11 4 15,847,183,592
Array sizing 13 57 11 3 103,709,185

Array Sizing Results

The results as shown in Table 1, we found that edge detection and line detection should
select to be hardware accelerator to increase operation speed. However, the resource, which
is spent on PL part is over the limitation. Therefore, array sizing should be considered by
the method described in the previous section. The input image is cropped and resized from
1920×1080 to 200×200 pixels. Therefore, hough1[rho][theta] and hough2[rho][theta] is
resized from 2203×120 to 224×120 according to HT theory, which in rho is the feasible
perpendicular length of the input image. As shown in Table 2 latency is reduced about 152
times faster and BRAM is reduced form 1,710% to 57%.

High Level Synthesis Optimizations of Road Lane Detection

719Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

Table 2
Comparison of default and array sizing

Lane detection process Processing Time (%) Processing Time (FPS) Processing Time (s/frame)
Pre-processing 30.60 0.8928 0.1049
Edge detection 32.30 0.9424 0.1107
Line detection 36.10 1.0533 0.1238

Angle calculation 1.00 0.0292 0.0034

Loop Unrolling and Loop Pipelining Results

The optimization techniques, loop unrolling, and loop pipelining are considered into inner-
nested loop of edge and line detection to analyze the suitable usability. In case of considering
to least latency, loop unrolling is sufficient to add along with first, third, and last nested
loop of Figure 13. Loop pipelining is sufficient to add along with the second nested loop
(both of edge detection and line detection nested loop). Although loop unrolling can reduce
the latency more than loop pipelining in third and last nested loop, the number of CLBs
is more than the limitation. Therefore, loop pipelining is sufficient to add along with third
and last nested loop instead of loop unrolling. The proposed method as shown in Table 3
is the combination of sufficient optimization techniques in all nested loop that can reduce
latency at clock frequency 100 MHz from 103,709,185 clock cycles to 15,789,018 clock
cycles or about 6.57 times is reduced. Both of loop unrolling and loop pipelining is latency
reducing optimization by throughput increasing or initiation interval decreasing. In case
of hough1[rho][theta], hough2[rho][theta] and two more arrays, sin[theta] and cos[theta],

Table 3
Comparison of loop unrolling and loop pipelining in each loop

Process Method Resource (%) Latency
(clock cycle)DSP BRAM CLB FF

All Default 12 30 9 3 103,709,185

1st
Unrolling 12 30 27 3 103,695,297
Pipelining 12 30 10 3 103,708,738

2nd

Edge detection
Unrolling 13 30 9 3 102,739,561
Pipelining 13 30 10 3 98,012,241

Line detection
Unrolling 135 30 228 72 61,853,749
Pipelining 13 30 10 3 46,056,556

Edge + Line detection Combination 15 30 10 3 45,046,530

3rd
Unrolling 12 30 177 79 98,457,416
Pipelining 12 30 15 6 98,457,432

4th
Unrolling 11 30 372 56 72,509,185
Pipelining 12 30 11 3 74,828,791

Proposed method (1) 15 30 34 6 15,789,018

Panadda Solod, Nattha Jindapetch, Kiattisak Sengchuai, Apidet Booranawong,
Pakpoom Hoyingcharoen, Surachate Chumpol and Masami Ikura

720 Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

which are constants stored in the same block of memory, the loop pipelining and loop
unrolling cannot get the best efficiency because of the limitation of memory accessing.

Array Partitioning Results

Since hough1[rho][theta], hough2[rho][theta] and two more arrays, sin[theta] and cos[theta]
are constants stored in the same block of memory, the loop pipelining and loop unrolling
cannot get the best efficiency cause of the limitation of memory accessing Table 4 is the
result of adding array partitioning to hough1[rho][theta], hough2[rho][theta], sin[theta]
and cos[theta] compare to the first proposed method. Both hough1[rho][theta] and
hough2[rho][theta] arrays are sufficient with array partitioning block type with F equal
to 6 at equal to is 2. The latency from the experiment is reduced from 15,789,018 clock
cycles to 15,777,837 clock cycles, which is only 0.99 times faster. Although Adding
array partitioning complete type to these arrays instead of array partitioning block type
would be faster, the resources on the device in this work will not enough to implement. In
contrast, cos[theta] and sin[theta] are sufficient with array partitioning complete type and
the latency is reduced from 15,789,018 clock cycles to 15,697,034 clock cycles compared
to the second proposed method.

Table 4
Comparison of array partitioning

Optimization
Resource (%) Latency (clock

cycle)DSP BRAM CLB FF
Proposed method (1) 15 30 34 6 15,789,018

hough1 &
hough2

block type, F 2, D 2 15 30 27 6 15,782,316
block type, F 6, D 2 17 44 24 8 15,777,837
block type, F 12, D 2 17 44 26 9 15,803,597
cyclic type, F 2, D 2 15 30 28 6 25,774,041
cyclic type, F 6, D 2 17 44 24 7 25,769,578
cyclic type, F 12, D 2 15 30 28 6 25,774,041

sin & cos

Complete type 17 42 39 8 15,697,034
Block type, F 2 18 42 27 9 15,777,845
Block type, F 6 17 42 27 9 15,777,837
Block type, F 12 17 42 27 9 15,777,846

Proposed method (2) 17 42 39 8 15,697,034

HLS Interface Management Results

In the case of the HLS interface, there are three types of block type interfaces available for
arrays, namely ap_ctrl_none, ap_ctrl_hs, and ap_ctrl_chain. There are many types of port-
level interfaces available for arrays, namely axis, s_axilite, m_axi, ap_hs, ap_memory, bram,

High Level Synthesis Optimizations of Road Lane Detection

721Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

ap_fifo, and ap_bus. In this experiment, the block-level interface and port-level interface
are matched to the input and output of RTL that Xilinx HLS has created. Following Figure
17, the first column represents a block-level interface, the second column represents a
port-level interface for the input and the final column is represent a port-level interface for
output. The result of the HLS interface management after all nested loop is added by the
optimization technique is shown in Table 5, which compares to the default of a block-level
interface and port-level interface, generated by Xilinx HLS. The least latency occurs with
all of the block-level interfaces while the port-level interface of input should be axis and
the port-level interface of output should be ap_memory.

Figure 17. HLS interface matching for array type

Table 5
Comparison of HLS interface

Method Latency (clock cycles) Processing Performance (FPS)
Default 15,847,183,592 0.006
Proposed (1) 15,789,018 6.334
Proposed (2) 15,697,034 6.371
Proposed (3) 15,616,232 6.404

Panadda Solod, Nattha Jindapetch, Kiattisak Sengchuai, Apidet Booranawong,
Pakpoom Hoyingcharoen, Surachate Chumpol and Masami Ikura

722 Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

CONCLUSION

This paper has presented the optimization for complex road lane detection method, which
supports lane curve recognition by angle calculation and loop analysis with optimization
technique to increase the rapidity of operation underneath the limitation of resources on
Xilinx Zynq-7000 (ZC7010).

The sequence of the optimization contains four steps: array sizing to reduce the
resources, loop unrolling and loop pipelining to increase operation speed by parallel
operation, array partitioning to prevent the bottleneck that can occur from the loop unrolling
and loop pipelining step, and HLS interface management to get the best data transmission.

From the experiment, we found that an array sizing is suitable for low memory devices
and adjustable to the method or experiment. Loop unrolling and loop pipelining is latency
reducing optimization techniques that suitable to different kinds of loops. In the case of loop
unrolling is suitable for dependent loops, which are loops that the result of each iteration in
loop does not affect to other iteration. In case of loop pipelining is suitable for dependent
loops, which are loops that the result of each iteration in loop effect to other iteration.
Array partitioning can be both of area reducing and latency reducing optimization. This
technique supports loop unrolling and loop pipelining to achieve efficiency as much as
possible. The determination of factor (F) and dimension (D) of array partitioning depends
on the sequence of the algorithm. The type of C argument, which is an input and output
in RTL will be suitable with a different type of HLS interface.

An array sizing, loop unrolling, loop pipelining, and array partitioning have been
applied to edge detection and line detection using Xilinx Vivado HLS. The summary
resource and latency of the proposed optimization techniques compared to the default
method are shown in Table 6. Following Tables 7 and 8, the resource utilization and speed
are compared between the proposed method on Zybo-ZC7010 with the other algorithms
on different architectures. Most of the performance in other algorithms on larger FPGA
devices is faster according to the clock frequency but spent a lot of resources as well.
Although the proposed method cannot be reached in real-time (25 FPS), it could reduce
resource consumption and the latency from 103,951,104 clock cycles to 15,616,232 clock
cycles, or latency is reduced 6.66 times at clock frequency 100 MHz.

In addition, the proposed method in this work can reach higher performance by
implementing on the high-performance devices. The optimizations can further gain the
benefit on the devices with sufficient resources. Since our procedure optimization method
only considered the inner-layer of nested-loop. Therefore, the speed performance still
can be increased by nested-loop layer analysis along with the procedure of the proposed
method that can be an instruction for the HLS developers.

High Level Synthesis Optimizations of Road Lane Detection

723Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

Table 6
The summary of the proposed optimization techniques compared the default method

Optimization Resource Latency (clock cycle)

DSP BRAM CLB FF
Default 17 42 39 8 15,697,034

HLS interface 16 42 39 8 15,616,232

Proposed method (3) 16 42 39 8 15,616,232

Table 7
The resource utilization comparison of the proposed method with other methods on different architectures

Architectures Resource Utilization

Slices LUTs On-chip Memory (Kbit) DSP Embedded Multiplier
Virtex-5 (ML505) (El
Hajjouji et al., 2020)

1,119 1,996 1,625 1 1

Altera DE2
(Marzotto et al., 2010)

14,945 14,945 1,555 - 15

Altera DE2-115
(Lu et al., 2013)

29,431 2,589 3,052 8 8

Altera Stratix
(Guan et al., 2017)

41,115 1,459 1,604 48 16

Zybo (ZC7010-1)
(proposed)

2,816 6,864 101 13 -

Table 8
The speed comparison of the proposed method with other methods on different architectures

Method F (MHz) Resolution Performance (FPS)

Virtex-5 (ML505) (El Hajjouji et al., 2020) 200 640 × 480 68

Altera DE2 (Marzotto et al., 2010) 115 1920 × 1080 25

Altera DE2-115
 (Lu et al., 2013)

200 1,024 × 768 64

Altera Stratix (Guan et al., 2017) 200 1,024 × 768 185

Zybo (ZC7010-1)
(Proposed)

100 1920 × 1080 6

ACKNOWLEGEMENTS

This research is financed by Prince of Songkla University, Hat Yai, Songkhla, Thailand.

REFERENCES
Chen, Y., & Boukerche, A. (2020). A Novel Lane Departure Warning System for Improving Road Safety. In

ICC 2020-2020 IEEE International Conference on Communications (ICC) (pp. 1-6). IEEE Conference
Publishing. https://doi.org/10.1109/ICC40277.2020.9149085

Panadda Solod, Nattha Jindapetch, Kiattisak Sengchuai, Apidet Booranawong,
Pakpoom Hoyingcharoen, Surachate Chumpol and Masami Ikura

724 Pertanika J. Sci. & Technol. 29 (2): 707 - 724 (2021)

El Hajjouji, I., Mars, S., Asrih, Z., & El Mourabit, A. (2020). A novel FPGA implementation of hough transform
for straight lane detection. Engineering Science and Technology, an International Journal, 23(2), 274-280.
https://doi.org/10.1016/j.jestch.2019.05.008

Feniche, M., & Mazri, T. (2019). Lane detection and tracking for intelligent vehicles: A survey. In 2019
International Conference of Computer Science and Renewable Energies (ICCSRE) (pp. 1-4). IEEE
Conference Publishing. https://doi.org/10.1109/ICCSRE.2019.8807727.

Guan, J., An, F., Zhang, X., Chen, L., & Mattausch, H. J. (2017). Real-time straight-line detection for XGA-
size videos by hough transform with parallelized voting procedures. Sensors, 17(2), Article 270. https://
doi.org/10.3390/s17020270

Hwang, S., & Lee, Y., (2016). FPGA-based real-time lane detection for advanced driver assistance systems.
In Proceedings of 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) (pp. 218-219).
IEEE Conference Publishing. https://doi.org/10.1109/APCCAS.2016.7803937

Khongprasongsiri, C., Kumhom, P., Suwansantisuk, W., Chotikawanid, T., Chumpol, S., & Ikura, M. (2018).
A hardware implementation for real-time lane detection using high-level synthesis. In 2018 International
Workshop on Advanced Image Technology (IWAIT) (pp. 1-4). IEEE Conference Publishing. https://doi.
org/10.1109/IWAIT.2018.8369730

Lee, D. K., Shin, J. S., Jung, J. H., Park, S. J., Oh, S. J., & Lee, I. S. (2017). Real-time lane detection and tracking
system using simple filter and Kalman filter. In 2017 Ninth International Conference on Ubiquitous
and Future Networks (ICUFN) (pp. 275-277). IEEE Conference Publishing. https://doi.org/10.1109/
ICUFN.2017.7993792

Lu, X., Song, L., Shen, S., He, K., Yu, S., & Ling, N. (2013). Parallel hough transform-based straight line
detection and its FPGA implementation in embedded vision. Sensors, 13(7), 9223-9247. https://doi.
org/10.3390/s130709223

Marzotto, R., Zoratti, P., Bagni, D., Colombari, A., & Murino, V. (2010). A real-time versatile roadway path
extraction and tracking on an FPGA platform. Computer Vision and Image Understanding, 114(11),
1164-1179. https://doi.org/10.1016/j.cviu.2010.03.015

Panda, P. R., Sharma, N., Kurra, S., Bhartia, K. A., & Singh, N. K. (2018). Exploration of loop unroll factors in
high level synthesis. In 2018 31st International Conference on VLSI Design and 2018 17th International
Conference on Embedded Systems (VLSID) (pp. 465-466). IEEE Conference Publishing. https://doi.
org/10.1109/VLSID.2018.115

Promrit, P., & Suntiamorntut, W. (2017, July). Design and development of lane detection based on FPGA. In
2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE) (pp.
1-4). IEEE Conference Publishing. https://doi.org/10.1109/JCSSE.2017.8025909

Solod, P., Sengchuai, K., Booranawong, A., Hoyingcharoen, P., Chumpol, S., Ikura, M., & Jindapetch, N. (2018,
October 30 - November 2). Model based design approach for road lane tracking [Paper presentation]. In
Asia Pacific Conference on Robot IoT System Development and Platform 2018 (APRIS2018). Prince of
Songkla University (PSU) Phuket Campus, Thailand.

